Next article Search Articles Instructions for authors  Access Statistics | Citation Manager  
ORIGINAL ARTICLE  

 Article Access Statistics
    Viewed194    
    Printed1    
    Emailed0    
    PDF Downloaded44    
    Comments [Add]    

Recommend this journal

Comparison of continuous cardiac output monitoring derived from regional impedance cardiography with continuous thermodilution technique in cardiac surgical patients


1 Department of Anaesthesiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Jayanagar, Bengaluru, Karnataka, India
2 Department of Cardiothoracic and Vascular Surgery, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Jayanagar, Bengaluru, Karnataka, India

Correspondence Address:
Naveen G Singh
Department of Anaesthesia, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bangalore - 560 069, Karnataka
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/aca.ACA_1_19

Rights and Permissions

Year : 2020  |  Volume : 23  |  Issue : 2  |  Page : 189-192

 

SEARCH
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles

  Article in PDF (1,415 KB)
Email article
Print Article
Add to My List
Background: Cardiac output (CO) assessment is a corner stone in advanced haemodynamic management, especially in critical ill patients. The present study was conducted to validate cardiac index and cardiac output by NICaS™ with the thermodilution technique using pulmonary artery catheter in post-operative cardiac surgical patients. Materials and Methods: This was a prospective observational clinical study conducted at a tertiary care hospital. 23 adult patients in the age range of 18-65 years who had undergone for elective coronary artery bypass grafting were included in the study. Results: Spearman's correlation coefficient of cardiac index between continuous Thermodilution (cTD) and Non-Invasive Cardiac System (NICaS™) showed a good correlation (r = 0.765, 95% confidence interval 0.70 to 0.82, P < 0.0001). There was a good correlation between cTD and NICaS™ for cardiac output (r = 0.759, 95% confidence interval 0.69 to 0.81, P < 0.0001), Bland-Altman plot for cardiac index between cTD and NICaS™ showed a mean bias of −0.66 ± 0.6919 with limits of agreement being −2.02 to 0.6936. Bland-Altman plot for cardiac output between cTD and NICaS™ showed a mean bias of −1.0386 ± 1.17 with limits of agreement being −3.34 to + 1.26. Percentage error for cardiac index and cardiac output were 64.78% and 64% respectively. Polar plot analysis showed an angular bias of 6.32° with radial limits of agreement being −8.114° to 20.75° for cardiac index and angular bias of 5.6682° with radial limits of agreement being −9.1422° to 20.4784° for cardiac output. Conclusion: NICaS™ demonstrated a good trending ability for both CI and CO. However, NICaS™ derived parameters are not interchangeable with the values derived from continuous thermodilution technique.






[FULL TEXT] [PDF]*
 

 

 

 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 
 
 Reader Comments
 Email Alert *
  *
 * Requires registration (Free)
 
 ORIGINAL ARTICLE
 




1 Department of Anaesthesiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Jayanagar, Bengaluru, Karnataka, India
2 Department of Cardiothoracic and Vascular Surgery, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Jayanagar, Bengaluru, Karnataka, India

Correspondence Address:
Naveen G Singh
Department of Anaesthesia, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bangalore - 560 069, Karnataka
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/aca.ACA_1_19

Rights and Permissions

Background: Cardiac output (CO) assessment is a corner stone in advanced haemodynamic management, especially in critical ill patients. The present study was conducted to validate cardiac index and cardiac output by NICaS™ with the thermodilution technique using pulmonary artery catheter in post-operative cardiac surgical patients. Materials and Methods: This was a prospective observational clinical study conducted at a tertiary care hospital. 23 adult patients in the age range of 18-65 years who had undergone for elective coronary artery bypass grafting were included in the study. Results: Spearman's correlation coefficient of cardiac index between continuous Thermodilution (cTD) and Non-Invasive Cardiac System (NICaS™) showed a good correlation (r = 0.765, 95% confidence interval 0.70 to 0.82, P < 0.0001). There was a good correlation between cTD and NICaS™ for cardiac output (r = 0.759, 95% confidence interval 0.69 to 0.81, P < 0.0001), Bland-Altman plot for cardiac index between cTD and NICaS™ showed a mean bias of −0.66 ± 0.6919 with limits of agreement being −2.02 to 0.6936. Bland-Altman plot for cardiac output between cTD and NICaS™ showed a mean bias of −1.0386 ± 1.17 with limits of agreement being −3.34 to + 1.26. Percentage error for cardiac index and cardiac output were 64.78% and 64% respectively. Polar plot analysis showed an angular bias of 6.32° with radial limits of agreement being −8.114° to 20.75° for cardiac index and angular bias of 5.6682° with radial limits of agreement being −9.1422° to 20.4784° for cardiac output. Conclusion: NICaS™ demonstrated a good trending ability for both CI and CO. However, NICaS™ derived parameters are not interchangeable with the values derived from continuous thermodilution technique.






[FULL TEXT] [PDF]*


        
Print this article     Email this article