ACA App
Annals of Cardiac Anaesthesia Annals of Cardiac Anaesthesia Annals of Cardiac Anaesthesia
Home | About us | Editorial Board | Search | Ahead of print | Current Issue | Archives | Submission | Subscribe | Advertise | Contact | Login 
Users online: 431 Small font size Default font size Increase font size Print this article Email this article Bookmark this page
 


 

 
     
    Advanced search
 

 
 
     
  
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Email Alert *
    Add to My List *
* Registration required (free)  


    Abstract
   Introduction
    Anatomy of the A...
    Transesophageal ...
    Technique of Vis...
    Left Subclavian ...
    Left Common Caro...
    Brachiocephalic ...
   Conclusion
    References
    Article Figures

 Article Access Statistics
    Viewed1041    
    Printed23    
    Emailed0    
    PDF Downloaded203    
    Comments [Add]    

Recommend this journal

 


 
Table of Contents
REVIEW ARTICLE  
Year : 2018  |  Volume : 21  |  Issue : 1  |  Page : 53-56
Transesophageal echocardiography evaluation of the aortic arch branches


Department of Cardiac Anesthesiology, Fortis Hospitals, Bengaluru, Karnataka, India

Click here for correspondence address and email

Date of Web Publication11-Jan-2018
 

   Abstract 


Visualization of aortic arch branches by transesophageal echocardiography has been technically challenging. Visualizing these vessels helps in identifying the extent of dissection of the aorta, assessing the severity of carotid artery stenosis, presence of atheromatous plaques, patency of the left internal mammary artery graft, confirmation of subclavian artery cannulation, confirming holodiastolic flow reversal in the left subclavian artery by spectral Doppler imaging in case of severe aortic regurgitation, and confirming the optimal position of the intraaortic balloon perioperatively. The information obtained is helpful for diagnosis, monitoring, and decision-making during aortic surgery.

Keywords: Aortic arch, brachiocephalic artery, carotid artery, innominate artery, subclavian artery, transesophageal echocardiography

How to cite this article:
Patil TA, Ambli SK. Transesophageal echocardiography evaluation of the aortic arch branches. Ann Card Anaesth 2018;21:53-6

How to cite this URL:
Patil TA, Ambli SK. Transesophageal echocardiography evaluation of the aortic arch branches. Ann Card Anaesth [serial online] 2018 [cited 2019 Aug 23];21:53-6. Available from: http://www.annals.in/text.asp?2018/21/1/53/223012





   Introduction Top


Visualization of aortic arch (AA) and its branches by transesophageal echocardiography (TEE) has been technically challenging. Visualizing these vessels help in identifying the extent of dissection of the aorta, assessing the severity of carotid artery stenosis, patency of the left internal mammary artery (LIMA) graft, confirmation of subclavian artery cannulation, confirming holodiastolic flow reversal in the left subclavian artery by spectral Doppler imaging in case of severe aortic regurgitation, and confirming the optimal position of the intraaortic balloon perioperatively. The information obtained is helpful for diagnosis, monitoring, and decision-making during aortic surgery.[1]


   Anatomy of the Aortic Arch Top


The AA lies between the ascending and descending thoracic aorta, in the superior mediastinum. The AA begins at the origin of brachiocephalic artery. The distal AA becomes the descending thoracic aorta at the aortic isthmus. The AA gives off brachiocephalic (innominate), left carotid, and left subclavian arteries in that order [Figure 1].[2],[3],[4]
Figure 1: Illustrated anatomy of aortic arch and its branches. ASC aorta: Ascending aorta, BCA: Brachiocephalic artery, LCC: Left common carotid artery, LSA: Left subclavian artery, DESC aorta: Descending aorta, T11: 11th thoracic vertebra

Click here to view


There are various anatomic variations of AA and its branches. Right-sided AA is prevalent in 0.1% of the population [Figure 2]a and [Figure 2]b. An isolated left vertebral artery is seen in about 4% of population.[5]
Figure 2: (a) Upper esophageal AA LAX view showing right-sided AA. (b) Upper esophageal AA LAX view showing left-sided AA. AA: Aortic arch, MPA: Main pulmonary artery, SVC: Superior vena cava

Click here to view



   Transesophageal Echocardiography Evaluation of Aortic Arch and Their Branches Top


The AA gives rise to three branches from its superior aspect.

  • Innominate (brachiocephalic) artery
  • Left common carotid artery
  • Left subclavian artery.



   Technique of Visualization Top


In the upper esophageal (UE) AA short-axis (SAX) view with the pulmonary artery being seen on the left side of the sector, the branch from the AA is commonly the left common carotid artery arising usually at 3 o'clock position [Figure 3]a. To visualize the origin of the left subclavian artery, the TEE probe is rotated counterclockwise, with the left subclavian artery being visualized at 1 o'clock position [Figure 3]b. Rotating the probe in a clockwise direction from the UE AA SAX view reveals an oblong-shaped aorta giving rise to the innominate or the brachiocephalic artery [Figure 3]c.
Figure 3: (a) Upper esophageal AA SAX view showing origin of the left common carotid artery with the pulmonary artery to the left. (b) Aortic arch giving rise to the LSA at 1 o'clock position. (c) Oblong-shaped aorta giving rise to the innominate artery. Ao arch: Aortic arch, Left CCA: Left common carotid artery, MPA: Main pulmonary artery, PV: Pulmonary valve, BCA: Brachiocephalic artery, LSA: Left subclavian artery, SAX: Short axis, AA: Aortic arch

Click here to view



   Left Subclavian Artery Top


Visualization of the left subclavian artery is achieved by counterclockwise rotation of the TEE probe from the UE AA SAX view. To visualize the branches of the left subclavian artery, one needs to optimize the depth, use color Doppler flow mapping from the beginning, optimize the gain to eliminate the artifacts, reduce the velocity scale to suit the low velocity flows and center the image by probe manipulation. Once the above-mentioned system settings are achieved, start withdrawing the probe keeping the image in the center of the screen. The left subclavian artery takes a course parallel to the direction of the ultrasound beam giving rise to the LIMA inferiorly and the left vertebral artery superiorly [Figure 4]a. The sector angle may need adjustment between 60° and 90° to visualize the vertebral artery and the LIMA. Both the vertebral artery and LIMA may not be visualized in the same view. The branches can be identified by their characteristic flow patterns.[6] Normally, there are two types of vessels, high resistance and low resistance vessels. The spectral Doppler flow pattern in the high resistance vessels exhibits only a prominent systolic flow due to high vascular resistance of the downstream normal muscular vascular bed at rest, while the low resistance vessels exhibit a prominent systolic and a low-grade diastolic flow pattern due to low vascular resistance of the downstream normal cerebral vascular bed. Left subclavian artery being high resistance vessel exhibits a triphasic flow pattern [Figure 4]b. The three phases are steep systolic increase, followed by early diastolic flow reversal and late diastolic short forward flow. On the contrary, left vertebral artery demonstrates a prominent systolic and a low-grade diastolic flow pattern as it supplies the low-resistance cerebral vascular bed [Figure 4]c. The LIMA has a high-resistance flow pattern [Figure 4]b. The native flow in the LIMA exhibits predominant systolic flow pattern by the pulse wave Doppler. Following anastomosis of the LIMA to the left anterior descending artery, the pulse wave Doppler depicts a biphasic flow pattern, a systolic and a dominant diastolic flow pattern [Figure 4]d.
Figure 4: (a) Color flow Doppler showing the left subclavian and left vertebral arteries. (b) Spectral Doppler of left subclavian artery showing high resistance triphasic flow. (c) Spectral Doppler of left vertebral artery showing low resistance flow with diastolic component. (d) Spectral Doppler of left internal mammary artery following anastomosis to left anterior descending artery showing a biphasic flow pattern, a systolic and a dominant diastolic flow patter

Click here to view



   Left Common Carotid Artery Top


Left common carotid artery is visualized by obtaining the UE AA SAX view. After optimizing the image for depth and color flow velocity scale, the TEE probe is withdrawn for 3–4 cm until the left common carotid artery bifurcates into left external and internal carotid arteries [Figure 5]a. The left external and left internal carotid arteries are recognized by their high resistance and low resistance flow patterns respectively by pulse wave Doppler imaging [Figure 5]b,[Figure 5]c,[Figure 5]d.
Figure 5: (a) Color flow Doppler of the left common carotid artery showing bifurcation into left ECA and ICAs. (b) Spectral Doppler of left ECA showing high resistance flow pattern. (c) Spectral Doppler of left ICA showing the low resistance flow pattern. (d) Dissected intimal flap extending into the origin of left common carotid artery. ECA: External carotid artery, PW: Pulse wave, ICA: Internal carotid artery

Click here to view



   Brachiocephalic Artery Top


Rotating the probe in a clockwise direction from the UE AA SAX view reveals an oblong-shaped aorta giving rise to the innominate or the brachiocephalic artery. The major limitation in visualizing this vessel is the presence of the underlying trachea and/or right bronchus. With TEE, the brachiocephalic artery is not visualized in 2/3rd of the patients. This can be overcome using the A-view catheter [Figure 6]a.[7] On withdrawing the probe further, it bifurcates into the right subclavian and right common carotid arteries inferiorly parallel to the ultrasound beam [Figure 6]b which can be differentiated by their pulse wave Doppler flow patterns [Figure 6]c and d].[8] The right subclavian artery Doppler is of high-resistance pattern and right common carotid artery flow is of a low-resistance pattern. This view is often referred to as the transpharyngeal view. Only a cranial part of this vessel is visualized in this view. One of the disadvantages of this view is that the probe may be pulled out of the esophagus and may be difficult to reinsert during the surgical procedure. Visualizing these vessels helps in identifying the extent of dissection of the aorta and presence of atheromatous plaques [Figure 6]e and [Figure 6]f.
Figure 6: (a) Three-dimensional view showing BCA in long axis and trachea with the A-View catheter in situ. (b) Color flow Doppler of the BCA bifurcating into right subclavian and right common carotid arteries. (c) Spectral Doppler of the right subclavian artery showing high resistance flow. (d) Spectral Doppler of the right CCA showing low resistance flow. (e) Dissected intimal flap extending into the origin of the BCA. (f) Mobile plaque visualized at the origin of the BCA. BCA: Brachiocephalic artery, CCA: Common carotid artery

Click here to view



   Conclusion Top


TEE evaluation of AA branches provides useful information to diagnose pathological conditions including extension of aortic dissections. TEE examination can be completed within a very short time and can even be superior to CT scan in unstable critically ill patients. The information obtained is helpful for diagnosis, monitoring, and decision-making during AA surgeries.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
   References Top

1.
Orihashi K, Matsuura Y, Sueda T, Watari M, Okada K, Sugawara Y, et al. Aortic arch branches are no longer a blind zone for transesophageal echocardiography: A new eye for aortic surgeons. J Thorac Cardiovasc Surg 2000;120:466-72.  Back to cited text no. 1
    
2.
Hiratzka LF, Bakris GL, Beckman JA, Bersin RM, Carr VF, Casey DE Jr, et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: Executive summary. A report of the American College of Cardiology Foundation, American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society for Vascular Medicine. J Am Coll Cardiol 2010;55:1509-44.  Back to cited text no. 2
    
3.
Svensson LG, Adams DH, Bonow RO, Kouchoukos NT, Miller DC, O'Gara PT, et al. Aortic valve and ascending aorta guidelines for management and quality measures. Ann Thorac Surg 2013;95:1-66.  Back to cited text no. 3
    
4.
Erbel R, Aboyans V, Boileau C, Bossone E, Bartolomeo RD, Eggebrecht H, et al. 2014 ESC guidelines on the diagnosis and treatment of aortic diseases: Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur Heart J 2014;35:2873-926.  Back to cited text no. 4
    
5.
Kern MJ, Serota H, Callicoat P, Deligonul U, Lee WH, Aguirre F, et al. Use of coronary arteriography in the preoperative management of patients undergoing urgent repair of the thoracic aorta. Am Heart J 1990;119:143-8.  Back to cited text no. 5
    
6.
Agrawal G, LaMotte LC, Nanda NC, Parekh HH. Identification of the aortic arch branches using transesophageal echocardiography. Echocardiography 1997;14:461-66.  Back to cited text no. 6
    
7.
Nierich AP, van Zaane B, Buhre WF, Coddens J, Spanjersberg AJ, Moons KG, et al. Visualization of the distal ascending aorta with A-mode transesophageal echocardiography. J Cardiothorac Vasc Anesth 2008;22:766-73.  Back to cited text no. 7
    
8.
Nanda NC, Nekkanti R, Melendez A, Kang SW, Baker C 3rd, Yousif AM, et al. Transesophageal two-dimensional echocardiographic demonstration of the innominate artery and its branches. Am J Geriatr Cardiol 2001;10:368-70.  Back to cited text no. 8
    

Top
Correspondence Address:
Thimmangouda A Patil
Department of Cardiac Anesthesiology, Fortis Hospitals, Cunningham Road Branch, Bengaluru, Karnataka
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/aca.ACA_109_17

Rights and Permissions


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6]



 

Top