Next article Search Articles Instructions for authors  Access Statistics | Citation Manager  
ORIGINAL ARTICLE  

 Article Access Statistics
    Viewed1064    
    Printed9    
    Emailed0    
    PDF Downloaded106    
    Comments [Add]    
    Cited by others 1    

Recommend this journal

Imaging skills for transthoracic echocardiography in cardiology fellows: The value of motion metrics


1 Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
2 Department of Anesthesia, St. Michael's Hospital, Toronto, Canada
3 Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
4 Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA

Correspondence Address:
Mario Montealegre-Gallegos
Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0971-9784.179595

Rights and Permissions

Year : 2016  |  Volume : 19  |  Issue : 2  |  Page : 245-250

 

SEARCH
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles

  Article in PDF (972 KB)
Email article
Print Article
Add to My List
Background: Proficiency in transthoracic echocardiography (TTE) requires an integration of cognitive knowledge and psychomotor skills. Whereas cognitive knowledge can be quantified, psychomotor skills are implied after repetitive task performance. We applied motion analyses to evaluate psychomotor skill acquisition during simulator-based TTE training. Methods and Results: During the first month of their fellowship training, 16 cardiology fellows underwent a multimodal TTE training program for 4 weeks (8 sessions). The program consisted of online and live didactics as well as simulator training. Kinematic metrics (path length, time, probe accelerations) were obtained at the start and end of the course for 8 standard TTE views using a simulator. At the end of the course TTE image acquisition skills were tested on human models. After completion of the training program the trainees reported improved self-perceived comfort with TTE imaging. There was also an increase of 8.7% in post-test knowledge scores. There was a reduction in the number of probe accelerations [median decrease 49.5, 95% CI = 29-73, adjusted P < 0.01], total time [median decrease 10.6 s, 95% CI = 6.6-15.5, adjusted P < 0.01] and path length [median decrease 8.8 cm, 95% CI = 2.2-17.7, adjusted P < 0.01] from the start to the end of the course. During evaluation on human models, the trainees were able to obtain all the required TTE views without instructor assistance. Conclusion: Simulator-derived motion analyses can be used to objectively quantify acquisition of psychomotor skills during TTE training. Such an approach could be used to assess readiness for clinical practice of TTE.






[FULL TEXT] [PDF]*
 

 

 

 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 
 
 Reader Comments
 Email Alert *
  *
 * Requires registration (Free)
 
 ORIGINAL ARTICLE
 




1 Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
2 Department of Anesthesia, St. Michael's Hospital, Toronto, Canada
3 Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
4 Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA

Correspondence Address:
Mario Montealegre-Gallegos
Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0971-9784.179595

Rights and Permissions

Background: Proficiency in transthoracic echocardiography (TTE) requires an integration of cognitive knowledge and psychomotor skills. Whereas cognitive knowledge can be quantified, psychomotor skills are implied after repetitive task performance. We applied motion analyses to evaluate psychomotor skill acquisition during simulator-based TTE training. Methods and Results: During the first month of their fellowship training, 16 cardiology fellows underwent a multimodal TTE training program for 4 weeks (8 sessions). The program consisted of online and live didactics as well as simulator training. Kinematic metrics (path length, time, probe accelerations) were obtained at the start and end of the course for 8 standard TTE views using a simulator. At the end of the course TTE image acquisition skills were tested on human models. After completion of the training program the trainees reported improved self-perceived comfort with TTE imaging. There was also an increase of 8.7% in post-test knowledge scores. There was a reduction in the number of probe accelerations [median decrease 49.5, 95% CI = 29-73, adjusted P < 0.01], total time [median decrease 10.6 s, 95% CI = 6.6-15.5, adjusted P < 0.01] and path length [median decrease 8.8 cm, 95% CI = 2.2-17.7, adjusted P < 0.01] from the start to the end of the course. During evaluation on human models, the trainees were able to obtain all the required TTE views without instructor assistance. Conclusion: Simulator-derived motion analyses can be used to objectively quantify acquisition of psychomotor skills during TTE training. Such an approach could be used to assess readiness for clinical practice of TTE.






[FULL TEXT] [PDF]*


        
Print this article     Email this article