Next article Search Articles Instructions for authors  Access Statistics | Citation Manager  
ORIGINAL ARTICLE  

 Article Access Statistics
    Viewed2042    
    Printed119    
    Emailed5    
    PDF Downloaded202    
    Comments [Add]    

Recommend this journal

Simulation training for extracorporeal membrane oxygenation


1 Department of Education and Simulation, Weston Education Centre, King's College Hospital, London, SE5 9RS, UK
2 Department of Education, King's College Hospital, London, SE5 9RS, UK
3 Department of Intensive Care Medicine, King's College Hospital, London, SE5 9RS, UK

Correspondence Address:
Dr. Roberta Brum
Department of Education and Simulation, Weston Education Centre, Kings College Hospital, London, SE5 9RS
UK
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0971-9784.154472

Rights and Permissions

Year : 2015  |  Volume : 18  |  Issue : 2  |  Page : 185-190

 

SEARCH
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles

  Article in PDF (377 KB)
Email article
Print Article
Add to My List
Background: Extracorporeal membrane oxygenation (ECMO) is a complex treatment. Despite this, there are a lack of training programs designed to develop relevant clinical and nonclinical skills required for ECMO specialists. The aim of the current study was to describe the design, implementation and evaluation of a 1-day simulation course for delivering training in ECMO. Methods: A 1-day simulation course was developed with educational and intensive care experts. First, the delegates received a lecture on the principles of simulation training and the importance of human factors. This was, followed by a practical demonstration and discussion of the ECMO circuit, console components, circuit interactions effects and potential complications. There were then five ECMO simulation scenarios with debriefing that covered technical and nontechnical issues. The course culminated in a knowledge-based assessment. Course outcomes were assessed using purpose-designed questionnaires. Results: We held 3 courses with a total of 14 delegates (9 intensive care nurses, 3 adult intensive care consultants and 2 ECMO technicians). Following the course, 8 (57%) gained familiarity in troubleshooting an ECMO circuit, 6 (43%) increased their familiarity with the ECMO pump and circuit, 8 (57%) perceived an improvement in their communication skills and 7 (50%) perceived an improvement in their leadership skills. At the end of the course, 13 (93%) delegates agreed that they felt more confident in dealing with ECMO. Conclusions: Simulation-training courses may increase knowledge and confidence in dealing with ECMO emergencies. Further studies are indicated to determine whether simulation training improves clinical outcomes and translates to reduced complication rates in patients receiving ECMO.






[FULL TEXT] [PDF]*
 

 

 

 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 
 
 Reader Comments
 Email Alert *
  *
 * Requires registration (Free)
 
 ORIGINAL ARTICLE
 




1 Department of Education and Simulation, Weston Education Centre, King's College Hospital, London, SE5 9RS, UK
2 Department of Education, King's College Hospital, London, SE5 9RS, UK
3 Department of Intensive Care Medicine, King's College Hospital, London, SE5 9RS, UK

Correspondence Address:
Dr. Roberta Brum
Department of Education and Simulation, Weston Education Centre, Kings College Hospital, London, SE5 9RS
UK
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0971-9784.154472

Rights and Permissions

Background: Extracorporeal membrane oxygenation (ECMO) is a complex treatment. Despite this, there are a lack of training programs designed to develop relevant clinical and nonclinical skills required for ECMO specialists. The aim of the current study was to describe the design, implementation and evaluation of a 1-day simulation course for delivering training in ECMO. Methods: A 1-day simulation course was developed with educational and intensive care experts. First, the delegates received a lecture on the principles of simulation training and the importance of human factors. This was, followed by a practical demonstration and discussion of the ECMO circuit, console components, circuit interactions effects and potential complications. There were then five ECMO simulation scenarios with debriefing that covered technical and nontechnical issues. The course culminated in a knowledge-based assessment. Course outcomes were assessed using purpose-designed questionnaires. Results: We held 3 courses with a total of 14 delegates (9 intensive care nurses, 3 adult intensive care consultants and 2 ECMO technicians). Following the course, 8 (57%) gained familiarity in troubleshooting an ECMO circuit, 6 (43%) increased their familiarity with the ECMO pump and circuit, 8 (57%) perceived an improvement in their communication skills and 7 (50%) perceived an improvement in their leadership skills. At the end of the course, 13 (93%) delegates agreed that they felt more confident in dealing with ECMO. Conclusions: Simulation-training courses may increase knowledge and confidence in dealing with ECMO emergencies. Further studies are indicated to determine whether simulation training improves clinical outcomes and translates to reduced complication rates in patients receiving ECMO.






[FULL TEXT] [PDF]*


        
Print this article     Email this article