Next article Search Articles Instructions for authors  Access Statistics | Citation Manager  
ORIGINAL ARTICLE  

 Article Access Statistics
    Viewed5129    
    Printed151    
    Emailed0    
    PDF Downloaded368    
    Comments [Add]    
    Cited by others 5    

Recommend this journal

Treatment of ethanol-induced acute pulmonary hypertension and right ventricular dysfunction in pigs, by sildenafil analogue (UK343-664) or nitroglycerin


1 Department of Anaesthesiology, University of Florida College of Medicine, Gainesville, Florida FL, USA
2 Department of Anaesthesiology, University of Florida College of Medicine and Anaesthesia Service, Malcom Randall Veterans Administration Hospital, Gainesville, Florida FL, USA
3 Anaesthesia Service, Malcom Randall Veterans Administration Hospital, Gainesville, Florida FL, USA

Correspondence Address:
Avner Sidi
Department of Anaesthesiology, University of Florida College of Medicine, PO Box 100254, 1600 SW Archer Road, Gainesville, Florida 32610-0254
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0971-9784.41577

Rights and Permissions

Year : 2008  |  Volume : 11  |  Issue : 2  |  Page : 97-104

 

SEARCH
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles

  Article in PDF (178 KB)
Email article
Print Article
Add to My List
In patients at risk for sudden ethanol (ETOH) intravascular absorption, prompt treatment of pulmonary hypertension (PHTN) will minimise the risk of cardiovascular decompensation. We investigated the haemodynamic effects of intravenous ETOH and the pulmonary vasodilatory effects of a sildenafil analogue (UK343-664) and nitroglycerin (NTG) during ETOH-induced PHTN in pigs. We studied pulmonary and systemic haemodynamics, and right ventricular rate or time derivate of pressure rise during ventricular contraction ( =dP/dT), as an index of contractility, in 23 pigs. ETOH was infused at a rate of 50 mg/kg/min, titrated to achieve a twofold increase in mean pulmonary arterial pressure (MPAP), and then discontinued. The animals were randomised to receive an infusion of 2 ml/kg ( n = 7) normal saline, a 500-μg/kg bolus of UK343-664 ( n = 8), or NTG 1 μg/kg ( n = 8); each was given over 60 seconds. Following ETOH infusion, dP/dT decreased central venous pressure (CVP), and MPAP increased significantly, resulting in significantly increased pulmonary vascular resistance (PVR). Within 2 minutes after treatment with either drug, CVP, heart rate (HR), and the systemic vascular resistance-to-pulmonary vascular resistance (SVR/PVR) ratio returned to baseline. However, at that time, only in the UK343-664 group, MPAP and dP/dT partially recovered and were different from the respective values at PHTN stage. NTG and UK343-664 decreased PVR within 2 minutes, from 1241579 and 1224494 dyne cm/sec 5 , which were threefold-to-fourfold increased baseline values, to 672308 and 538203 dyne cm/sec 5 respectively. However, only in the UK343-664 group, changes from baseline PVR values after treatment were significant compared to the maximal change during target PHTN. Neither drug caused a significant change in SVR. In this model of ETOH-induced PHTN, both UK343-664 and NTG were effective pulmonary vasodilators with a high degree of selectivity. However, the changes from baseline values of PVR, and the partial recovery of systemic pressure and RV contractility compared to the maximal change during target PHTN, were significant only in the sildenafil analogue group.






[FULL TEXT] [PDF]*
 

 

 

 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 
 
 Reader Comments
 Email Alert *
  *
 * Requires registration (Free)
 
 ORIGINAL ARTICLE
 




1 Department of Anaesthesiology, University of Florida College of Medicine, Gainesville, Florida FL, USA
2 Department of Anaesthesiology, University of Florida College of Medicine and Anaesthesia Service, Malcom Randall Veterans Administration Hospital, Gainesville, Florida FL, USA
3 Anaesthesia Service, Malcom Randall Veterans Administration Hospital, Gainesville, Florida FL, USA

Correspondence Address:
Avner Sidi
Department of Anaesthesiology, University of Florida College of Medicine, PO Box 100254, 1600 SW Archer Road, Gainesville, Florida 32610-0254
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0971-9784.41577

Rights and Permissions

In patients at risk for sudden ethanol (ETOH) intravascular absorption, prompt treatment of pulmonary hypertension (PHTN) will minimise the risk of cardiovascular decompensation. We investigated the haemodynamic effects of intravenous ETOH and the pulmonary vasodilatory effects of a sildenafil analogue (UK343-664) and nitroglycerin (NTG) during ETOH-induced PHTN in pigs. We studied pulmonary and systemic haemodynamics, and right ventricular rate or time derivate of pressure rise during ventricular contraction ( =dP/dT), as an index of contractility, in 23 pigs. ETOH was infused at a rate of 50 mg/kg/min, titrated to achieve a twofold increase in mean pulmonary arterial pressure (MPAP), and then discontinued. The animals were randomised to receive an infusion of 2 ml/kg ( n = 7) normal saline, a 500-μg/kg bolus of UK343-664 ( n = 8), or NTG 1 μg/kg ( n = 8); each was given over 60 seconds. Following ETOH infusion, dP/dT decreased central venous pressure (CVP), and MPAP increased significantly, resulting in significantly increased pulmonary vascular resistance (PVR). Within 2 minutes after treatment with either drug, CVP, heart rate (HR), and the systemic vascular resistance-to-pulmonary vascular resistance (SVR/PVR) ratio returned to baseline. However, at that time, only in the UK343-664 group, MPAP and dP/dT partially recovered and were different from the respective values at PHTN stage. NTG and UK343-664 decreased PVR within 2 minutes, from 1241579 and 1224494 dyne cm/sec 5 , which were threefold-to-fourfold increased baseline values, to 672308 and 538203 dyne cm/sec 5 respectively. However, only in the UK343-664 group, changes from baseline PVR values after treatment were significant compared to the maximal change during target PHTN. Neither drug caused a significant change in SVR. In this model of ETOH-induced PHTN, both UK343-664 and NTG were effective pulmonary vasodilators with a high degree of selectivity. However, the changes from baseline values of PVR, and the partial recovery of systemic pressure and RV contractility compared to the maximal change during target PHTN, were significant only in the sildenafil analogue group.






[FULL TEXT] [PDF]*


        
Print this article     Email this article