Next article Search Articles Instructions for authors  Access Statistics | Citation Manager  
TUTORIAL  

 Article Access Statistics
    Viewed24169    
    Printed882    
    Emailed65    
    PDF Downloaded5081    
    Comments [Add]    
    Cited by others 83    

Recommend this journal

Cardiac output monitoring


Pondicherry Institute of Medical Sciences, Kalapet, Puducherry, India

Correspondence Address:
Lailu Mathews
Pondicherry Institute of Medical Sciences, Kalapet, Puducherry - 605 014
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0971-9784.38455

Rights and Permissions

Year : 2008  |  Volume : 11  |  Issue : 1  |  Page : 56-68

 

SEARCH
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles

  Article in PDF (171 KB)
Email article
Print Article
Add to My List
Minimally invasive and non-invasive methods of estimation of cardiac output (CO) were developed to overcome the limitations of invasive nature of pulmonary artery catheterization (PAC) and direct Fick method used for the measurement of stroke volume (SV). The important minimally invasive techniques available are: oesophageal Doppler monitoring (ODM), the derivative Fick method (using partial carbon dioxide (CO 2 ) breathing), transpulmonary thermodilution, lithium indicator dilution, pulse contour and pulse power analysis. Impedance cardiography is probably the only non-invasive technique in true sense. It provides information about haemodynamic status without the risk, cost and skill associated with the other invasive or minimally invasive techniques. It is important to understand what is really being measured and what assumptions and calculations have been incorporated with respect to a monitoring device. Understanding the basic principles of the above techniques as well as their advantages and limitations may be useful. In addition, the clinical validation of new techniques is necessary to convince that these new tools provide reliable measurements. In this review the physics behind the working of ODM, partial CO 2 breathing, transpulmonary thermodilution and lithium dilution techniques are dealt with. The physical and the physiological aspects underlying the pulse contour and pulse power analyses, various pulse contour techniques, their development, advantages and limitations are also covered. The principle of thoracic bioimpedance along with computation of CO from changes in thoracic impedance is explained. The purpose of the review is to help us minimize the dogmatic nature of practice favouring one technique or the other.






[FULL TEXT] [PDF]*
 

 

 

 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 
 
 Reader Comments
 Email Alert *
  *
 * Requires registration (Free)
 
 TUTORIAL
 




Pondicherry Institute of Medical Sciences, Kalapet, Puducherry, India

Correspondence Address:
Lailu Mathews
Pondicherry Institute of Medical Sciences, Kalapet, Puducherry - 605 014
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0971-9784.38455

Rights and Permissions

Minimally invasive and non-invasive methods of estimation of cardiac output (CO) were developed to overcome the limitations of invasive nature of pulmonary artery catheterization (PAC) and direct Fick method used for the measurement of stroke volume (SV). The important minimally invasive techniques available are: oesophageal Doppler monitoring (ODM), the derivative Fick method (using partial carbon dioxide (CO 2 ) breathing), transpulmonary thermodilution, lithium indicator dilution, pulse contour and pulse power analysis. Impedance cardiography is probably the only non-invasive technique in true sense. It provides information about haemodynamic status without the risk, cost and skill associated with the other invasive or minimally invasive techniques. It is important to understand what is really being measured and what assumptions and calculations have been incorporated with respect to a monitoring device. Understanding the basic principles of the above techniques as well as their advantages and limitations may be useful. In addition, the clinical validation of new techniques is necessary to convince that these new tools provide reliable measurements. In this review the physics behind the working of ODM, partial CO 2 breathing, transpulmonary thermodilution and lithium dilution techniques are dealt with. The physical and the physiological aspects underlying the pulse contour and pulse power analyses, various pulse contour techniques, their development, advantages and limitations are also covered. The principle of thoracic bioimpedance along with computation of CO from changes in thoracic impedance is explained. The purpose of the review is to help us minimize the dogmatic nature of practice favouring one technique or the other.






[FULL TEXT] [PDF]*


        
Print this article     Email this article